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Abstract

In recent years, a major focus of astronomy has been the study of the effects of supermassive

black holes (SMBH) on their host galaxies. Recent results have found strong correlations between

SMBH mass and host galaxy properties, most notably in the bulge velocity dispersion and galaxy

stellar mass. We utilize these relations along with a novel convolution method to construct number

density models of different galaxy properties. Using these models, we compare two fundamental

methods for constructing a black hole mass function (BHMF) with theM•-σ andM•-M∗ relations.

With these methods, we estimate the redshift evolution of the BHMF and, based on that, compare

mass growth histories of central black holes and their host galaxies. Additionally, we utilize a data

compilation of over 500 galaxies with individual measurements of galaxy properties (BH mass,

stellar velocity dispersion, stellar mass, etc.) and classify galaxies by their morphologies in order

to shed light on the controversial Shankar et al. (2016) argument that observations are biased in

favor of massive SMBHs. We find that such a bias has little impact on the SMBH-galaxy relations.

We conclude that the galaxy sample is a fair representation of the local universe and argue that

our BH number density and scaling relations can be employed in the future to constrain relevant

mechanisms for galaxy formation. We emphasize that this is the most comprehensive and accurate

study of SMBH-galaxy coevolution as of now.



1 INTRODUCTION

The impact that active supermassive black holes (SMBHs) can have on their surrounding host

galaxies is profound yet still poorly understood. In fact, the why, how, and when black holes

alter the evolutionary pathways of their host galaxies remain as some of the major questions in

astronomy.

One of the most important results has been the discovery that the masses of the central SMBHs

are well correlated with the properties of their host galaxies, especially with the bulge properties

(Magorrian et al. (1998); Gebhardt et al. (2000); Kormendy & Ho (2013)). This suggests that

the formation of the galactic central black hole and the bulge are intimately correlated. While

the relationship between the black hole mass and the bulge stellar velocity dispersion (σ) is often

referred as the overall tightest relation, it is now well established that the mass of black holes also

correlates with the total stellar mass of their host galaxy, although with larger dispersion (Reines &

Volonteri (2015)).

It is generally accepted that the mass growth of SMBHs is largely through radiatively efficient

gas accretion during the active quasi-stellar object (QSO) phase and as active galactic nuclei (AGN).

Observations based on distant QSOs and AGNs show that the peak of the accretion rate density

onto SMBHs was around z ∼ 2, which was also the peak of star formation rate density (Merloni &

Heinz (2008)). Moreover, there is ample evidence showing that the SMBHmass accretion rate and

the star formation rate density are intimately correlated at least since z ∼ 3 (Madau & Dickinson

(2014)). This reinforces the idea that the relationship between SMBHs and their host galaxies is

the key to understanding galaxy formation.

In this paper, we analyze over 500 distinct galaxies (a compilation of van den Bosch et. al

(2016) and Reines and Volonteri (2015)) with individual measurements of black hole mass, stellar

velocity dispersion, and stellar mass. We report SMBHmass-velocity dispersion and SMBHmass-

stellar mass relationships and estimate the redshift evolution of the SMBH mass function derived

based on these relationships. Finally, we present a simple model in which we measure the history

of formation of black holes and galaxies.
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1.1 Significance of Project

This paper’s focus is to study the coevolution between galaxies and SMBHs over a broad range

of the cosmic history of the Universe. Compared to previous studies that have derived the evolution

of SMBHs based on empirical estimates from the stellar mass abundance of galaxies, we took the

liberty of using the novel methodology of a convolution method as the basis of our research. This

general method allows us to construct black hole masses not based solely on one galaxy property

but to consider a large diversity of galaxy properties. In doing so, we establish a fair standard to

see how the velocity dispersion and stellar mass methods compare in SMBH-galaxy coevolution,

especially in evolution at high redshifts. This is actually the first time that a study has directly

compared the two as a function of redshift and it potentially reveals a tighter agreement for the

galaxy properties than previously noted.

In addition to comparing two different methods, we compared biased and unbiased relations

and their results. Recently, Shankar et al. (2016) proposed that astronomical observations tended

to detect higher mass SMBHs over lower mass ones. Hence, a bias in all such databases is prevalent

and causes relations and results to skew towards the high mass end. This proposal has become very

controversial, so we decided to investigate this possible bias. After confirming its validity, we

used biased and unbiased datasets and formulated relations to directly compare the accuracy of

our results. The fact that our coevolution was not significantly impacted from this bias makes us

question how important this bias really is.

2 DEMOGRAPHICS FROM GALAXY CORRELATIONS

Imagine that we want to measure the number density function for galaxy property p for a com-

plete sample of galaxies. Next, consider the galaxy property q and assume that the number density

of this galaxy property is known as well as the relationship between p and q, i.e. p = p(q), and the

dispersion around it. Through this convolution, we can thus predict the number density of p from

q using the following expression:

2



ϕp (p) =
∫ ∞

0
P (p | q)ϕ (q) dq (1)

Provided p = p(q) is known, it does not matter what p is, or how tight the correlation is between

p and q; the number density can always be predicted very accurately from the above equation.

For simplicity, we will assume that the probability distribution function of the galaxy property p

is lognormal with mean given by the relationship p = p(q) and dispersion given by the observed

scatter in the relationship.
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Figure 1: Galaxy StellarMass FunctionRedshift evolution from z∼ 0.1 to z∼ 10 of the galaxy stellar mass function
(GSMF) derived by using a set of 22 observational samples represented with the filled circles with error bars. Solid
lines are the best fit model from a set of 5× 105 MCMC models.

One of the most fundamental properties of a galaxy is its stellar mass, M∗. Therefore, in this

paper we will use M∗ as a property q and its corresponding number density, known as the galaxy

stellar mass function (GSMF) and denoted by ϕ∗(M∗), to derive the number density of a galaxy

property p using Equation (1). Figure 1 shows the redshift evolution of the GSMF based on a

compilation of 22 observational studies (Rodríguez-Puebla in prep.) from z ∼ 0.1 to z ∼ 10 (solid

circles). The solid lines show the best fits to observations including several uncertainties affecting
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the GSMF due to errors in individual galaxy stellar mass estimates, stellar population synthesis

models, dust models, assumptions regarding star formation histories, and cosmic variance. This

directly implies that when inferring the number density of a galaxy property p, we are effectively

including observational errors in our modeling. This is important if our goal is to robustly under-

stand how SMBH and galaxies regulate each other. We will also use the central velocity dispersion

σ as another property q, and determine the Velocity Dispersion Function from observations.

In general, we will consider the following three observables: black hole massM•, bulge stellar

velocity dispersion σ, and stellar mass M∗. As mentioned earlier, the bulge stellar velocity dis-

persion is believed to be the tightest correlation between SMBH and galaxies. Here we will argue

that the fact that observations show a correlation between SMBH mass and the total stellar mass

suggests that the BH and the galaxy coevolve. Therefore, in our methodology we will consider

two different methods in order to estimate the number density of black holes by using the M•-σ,

M•-M∗ andM∗-σ correlations. Below, we describe in detail our two methods.

3 REDSHIFT EVOLUTION OF THEM• − σ RELATIONSHIP

In this section, we describe our methodology of inferring black hole number density from bulge

stellar velocity dispersion. We begin by describing how using theM∗-σ correlation, we derive the

σ number density, and then using theM•-σ relationship, we infer the black hole number density.

3.1 TheM∗ − σ Relationship

It is now well established that in galaxies there is a fundamental relationship between the max-

imum circular velocity and total stellar mass. Broadly speaking, galaxies can be divided into two

main classes: late-type galaxies (disk-like structures that are blue and star forming) and early-type

galaxies with large red spheroids without significant star formation. The correlation between the

maximum circular velocity and total stellar mass for disk galaxies is known as the Tully-Fisher re-

lation (Tully et al. (1977)) while for spheroids it is known as the the Faber-Jackson relation (Faber

et al. (1976)). While the Tully-Fisher relation refers to ordered motions of the stars in galaxies, Vc,
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the Faber-Jackson relation represents disordered motions measured as the velocity dispersion of the

stars, σ. However, simple arguments in virialized systems have shown that the relation Vc =
√
3 σ

is accurate enough to convert the Tully-Fisher relation into a velocity dispersion relation (Binney

& Tremaine (2008)). We will assume that the above relation is accurate enough at high redshifts.

Note that this is a common practice for studying the dynamics of galaxies at low z (Dutton et al.

(2011); Abramson et al. (2014); Rodriguez-Puebla et al. (2016)). Next, we show that the above

assumptions are also consistent with observations at high redshifts.
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Figure 2: σ − M∗ General Relation Average velocity dispersion to stellar mass relation plotted at three redshift
bins (blue line). We plot three experimental relations to test different methods of redshift evolution (blue, red, purple
lines). We observe little difference between the average relation and the E(z) relation because the expansion factor is
insignificant at low redshifts.

Figure 2 shows the mean M∗-σ relation as the blue solid line, constructed by multiplying the

Tully-Fisher and Faber-Jackson relations by the fraction of the universe populated by their mor-

phologies. We compare with observations from di Serego Alighieri et al. (2005) at three redshift

bins. We address the variation between the data values and the average curve by plotting three

other hypothetical redshift evolutions as indicated by the labels in the plot. The relation which

includes the expansion factor, E(z) which represents the value of the Hubble parameter at different
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epochs, was motivated by previous modeling based on large cosmological simulations (Rodriguez-

Puebla et al. (2016)). Based on this plot, we conclude that the mean M∗-σ relation is consistent

with little evolution in redshift, i.e. a possible time-independent correlation. We investigate this by

comparing our resulting velocity dispersion function with more observational inferences at high z.

3.2 Velocity Dispersion Function

Based on the mean M∗-σ relation, we derive the velocity dispersion function (VDF) by using

Equation (1). Figure 3 shows the resulting VDFs for five different redshift bins. Our results are

indicated by the labels in the figure. We compare to observational determinations from Bernardi et

al. (2010); Bezanson et al. (2012); Chae et al. (2011); and Abramson et al. (2014).
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Figure 3: Velocity Dispersion Function Using Equation (1), we construct the number density function for bulge ve-
locity dispersion (blue line) at five redshift bins. We once again test the three experimental relations (red, green, yellow
lines) and compare our empirical model to observational determinations from Bernardi et al. (2010) and Bezanson et
al. (2012) (solid blue points) and to those described in Chae et al. (2011) (purple lines), Abramson et al. (2014) (cyan
and black lines), and Montero-Dorta et al. (2016) (black band). Once again, we observe that the expansion factor
(yellow) is insignificant at lower redshifts.
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We note that Abramson et al. (2014) reported two different VDFs indicated as TF/FP and

Pseudo in the plot. The former is a similar method as employed in this paper while the latter is

based on a more empirical generalM∗-σ relation. We begin by noting that the relation given by a

time independentM∗-σ relation is consistent with observations as well as the relation that evolved

according to the expansion factor, E(z).

3.3 TheM• − σ Relationship

Naturally, to construct the black hole mass function, we must determine theM•-σ relationship

and the redshift dependence of this relation. Here we determine theM•-σ relationship based on a

compilation of over 500 galaxies with individual measurements of black hole mass, stellar velocity

dispersion, and stellar mass. Additionally, we use different publishedM•-σ relationships to derive

an average relation and compare to our compiled data.
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Figure 4: The Velocity Dispersion - Stellar Mass Relation: Tully-Fisher, Faber-Jackson, and Average Relations
The three panels display the compilation of over 500 galaxies sorted into disk galaxies (Tully-Fisher, red band), ellip-
tical galaxies (Faber-Jackson, yellow band) and the average σ-M∗ relation (blue band). We filter the middle 68% of
the data to evaluate effects of bias described in Shankar et al. (2016).
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All the panels in Figure 4 show theM∗-σ relationship from our compilation (solid circles with

error bars). The upper left panel shows this for galaxies with disk-like morphologies while the

upper right panel of the same figure shows galaxies with spheroidal morphologies. We determined

these morphologies based on a visual inspection of individual galaxies by using the SIMBAD As-

tronomical Database (http://simbad.u-strasbg.fr/simbad/). The first thing to notice is that not all

our observed galaxies reside in the expected region based on the Tully-Fisher and Faber-Jackson

relations. Note that the shaded areas indicate the region where 68% of the galaxies are expected to

be found from observations. This difference is more dramatic for spheroids than for spirals. Since

this could lead to a potential source of uncertainty in our results, we therefore decided to investigate

this further.

We begin by noting that the above discrepancy has been reported in the previous analysis by

Shankar et al. (2016) of the M∗-σ relation for galaxies with individual measurements of black

hole mass. These authors argued that in order to achieve high accuracy in black hole masses,

observations are usually biased to detect more massive black holes, resulting in systems that have

large velocity dispersions and therefore empirically skewing M•-σ relationships above the true

average. Here we test this hypothesis by selecting black holes that reside within the shaded areas

and then studying if this skew biases the results observed in the M•-σ relation, which should be

inherently independent of the skew of the dataset. Hereafter, we will refer to this as the filtered

data.

The upper right panel of Figure 5 shows the M•-σ relationship of our filtered data and the

entire data set. Note that our data does not occupy a different region compared to the unfiltered

compilation. Moreover, we have quantified any deviations by fitting both the filtered data and all

the data by using power-laws. Considering the best fit lines plotted for each type of relation in

Figure 5, we see that there is little to no effect from filtering the data to fit the average relation

for each type of galaxy. Thus, we conclude that the relationships derived can be safely used to

construct the black hole mass function. TheM•-σ relation we construct is of the following form:
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logM• = 8.16+ 4.94 log(
σ

200 km s−1
) (2)

and the scatter around the relation is given by: ϵ0 = 0.80 dex.
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Figure 5: M• − σ RelationWe derive our M•-σ relation from four empirical models displayed with the scatter in
Panel 1 (blue, green, magenta, yellow bands). Panels 2 and 3 display our derived relation as the light blue band with the
scatter and compare it to the other models and the compilation data. Panel 2 also compares the filtered and unfiltered
data from Section 3.4 and Figure 4 with the respective best fit lines for the two data sets.

3.4 High Redshift Relations ofM• − σ

Before finalizing the relation as the derived black hole mass function, we experiment with

different redshift evolution methods to evaluate the function at higher redshifts. Up to this point,

the function has been constrained by data at low redshifts (z ∼ 0.1 to z ∼ 1). Thus, to create a

mass function that is accurate at higher redshifts, we must test different methods of evolving it. We

create the first method by evolving with the same factor as described in Larkin et al. (2016), which

is similar to the one in Rodriguez-Puebla et al. (2016). Here, the expansion factor E(z) is used

and, as seen in Figure 6, the function shifts as a result. We also test the evolution using the black
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Figure 6: Different Redshift Evolutions The M•-σ relations plotted as the blue and green curves are combinations
of Equations (3) and (4) with a circular velocity function. We manually calculate the shift of the two curves and apply
that shifting factor to our generalized relation (red band) at each redshift panel. As a result, we observe the generalized
relation shifting in conjunction with the blue and green curves.

hole mass function described in Section 5. We convert the two mass functions intoM•-σ relations

using the bisection method. Essentially what this means is given a velocity Vmax density function

and a black hole mass density function, we find common density values across the two functions

and evaluate both to find the respective Vmax andM• values. Applying the same conversion factor

as before (Vc =
√
3 σ) allows us to approximate a M•-σ relation from a black hole mass function

and yields the plot through which we can calculate the evolution. By manually reading theM• and

σ shifts from z ∼ 0.1 to z ∼ 10, we create the function shifts observed in Figure 7. As can be seen,

the M•-σ relation evolves more drastically with the manually calculated shift, but both are fairly

accurate calculations of high redshift relations.
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Figure 7: Evolution with Expansion Factor Here we plot a contrast to Figure 6 in using a different shifting factor to
translate our generalized relation at higher redshifts. We apply the expansion factor from Larkin et al. (2015) (yellow
line) and as a result, the generalized relation moves along with the Larkin relation.

4 THEM• −M∗ RELATIONSHIP

In this section, we describe theM•−M∗ correlations that we will use in order to create another

method to estimate the number density of SMBHs.

As mentioned earlier, Shankar et al. (2016) argued that there is a potential bias in the way that

galaxy samples with direct measurements of SMBH masses skew towards high masses. Based on

their analysis, the authors claimed to have obtained the following intrinsic correlation forM•−M∗:

log
(
M•

M⊙

)
= 7.574 + 1.946x− 0.306x2 − 0.011x3 (3)

where x = logM∗ − 11. In this paper, we will refer to this relation in our plots as M•[M⊙] :

Shankar+ 2016.

The second relation we use is one obtained based upon direct black hole mass determination
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from Marconi & Hunt (2003). This relation is supposedly ”biased” and we will then use it to

compare with Equation (3) and evaluate the bias’s significance in our results. The equation has the

form:

logM• = logM∗ − 3.1 (4)

whereM• andM∗ are in solar masses. We will refer to it in our plots as 0.001M•.

Finally, we also calculate theM• −M∗ relation from the ∼ 500 galaxies described in the pre-

vious sections. We fit the entire dataset through a linear regression and find the following relation:

log M• = 1.28(logM∗)− 6.25 (5)

In order to test the bias argument, we used the filtered data described in Section 3.3 to obtain the

following equation:

log M• = 1.48(logM∗)− 8.24 (6)

8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0

log M ∗

5

6

7

8

9

10

11

lo
g

M
•

M• [M¯] : Shankar + 2016

0. 001 M•

Fit : All Data

Fit : Filtered

Figure 8: M• −M∗ Relation This figure plots the stellar mass of galaxies to the mass of their central SMBHs. We
display all of the relations we stated above and compare them to the observational samples shown in the background.

Figure 8 shows the comparison between the relations and our SMBH sample. Notice that Equa-
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tion (3) has a smaller curve as it tries to counter the bias. However, this bias could be exaggerated.

To see this, we compare the filtered fit to the all, gray and black solid lines respectively. The fil-

tered data actually does not reflect a strong bias. In fact, both linear regression relations are very

similar and we conclude that our relations can be safely used to derive black hole mass functions

(BHMFs). Finally, note that given the available range of stellar masses, we only consider SMBHs

in the mass range log(M•/M⊙) = 5 to 11. Mass

5 DETERMINING SMBH NUMBER DENSITY
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Figure 9: Mass Function at z ∼ 0We use Equation (3) as an upper bound and Equation (4) as a lower bound. This
cyan band represents our uncertainty, as the true mass function lies somewhere within it. Observational samples from
the literature show excellent correspondence with the functions forM• > 107.3M⊙.

In this section, we describe our resulting SMBH mass functions by using the M• − σ and

M• − M∗ relationships obtained in Sections 3 and 4, respectively. In Section 2, we showed our

robust methodology to find the number density of galaxies with a property p once the number

density of a property q and their relationship p = p(q) is known for those same galaxies. When
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deriving our SMBH mass function, we assume that p = M• and q = σ or M∗. Note that when

using q = M∗, ϕ(q) represents the GSMF while q = σ is the VDF. See Section 2 for details.

Figure 9 shows the resulting SMBH mass functions at z ∼ 0 from the M• − M∗ relations

and from theM• − σ relation described in Section 3. Despite the differences in deriving the rela-

tions, we observe that all the relations yield quite similar SMBH mass functions, especially from

M• < 108.5M⊙. On the same figure, we compare with observational inferences of the SMBHmass

function from Pakdil et al. (2016), Vika et al. (2009), and Graham et al. (2007), and see relative

agreement between our results and these past observations. More importantly, our resulting mass

functions from the filtered data do not express systematic deviations from the previous relations.
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Figure 10: Black Hole Mass Function for z ∼ 0.1 to z ∼ 10 The figure displays the SMBH mass functions
in redshift evolution based on our different derived methods. The velocity dispersion construction creates a band of
uncertainty (pink) and is bounded by the expansion factor addition and evolution. The stellar mass construction is
bounded by Equations (3) and (4) with a blue band.

Now, taking advantage of our method, we are also able to display the SMBH mass functions

across higher redshifts. In Figure 10, we apply the shifts from Section 3.3 and compare the different

methods of construction, examining their evolution. We find good agreement, indicating a stronger
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correlation between velocity dispersion and stellar mass methods than previously believed. Note

that there is a lack of observational data at these high redshifts. Additionally, since this is the

first time that SMBH mass functions have been viewed at such extreme redshifts, it is difficult to

compare with previous studies. Nonetheless, our BH number density and scaling relations can be

used in future studies, constraining relevant mechanisms for understanding galaxy formation.

6 RESULTS

Wewill now report our generalization at high redshifts and derive the average growth of galaxies

and SMBHs. Looking at how individual galaxies and SMBHs grow in mass, we can compare the

shape and size of their plots to understand the results of this project.

6.1 Determining the average growth of galaxies and SMBHs

Here, we describe amodel to determine the average stellar mass growth of galaxies and SMBHs.

The basic idea relies on tracking galaxies at a fixed number density and then studying their pro-

genitors and descendants as a function of cosmic time. In the absence of mergers, galaxies will

grow in mass by in-situ star formation while their number density remains constant. Mergers do

not conserve numbers, but if we ignore galaxy mergers, the mass growth of galaxies and SMBHs

will result in a shift in the cumulative number density of the GSMF and SMBH mass function.

More formally, we form and solve the following equation:

∫ ∞

qtp

ϕ(q, tp)dq =
∫ ∞

qtd

ϕ(q, td)dq (7)

where qtp is the property of the progenitor at time to and qtd is the property of the descendant at time

td. Note that q = M∗ for galaxies while q = M• for SMBHs. Finally, we solve the above equation

by fixing the number density at z = 0 and study the progenitors for galaxies with stellar masses

M∗ = 109, 109.5, 1010, ...1012M⊙. We use the same number densities to track the progenitors for

their corresponding SMBHs.
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We begin by looking to Figure 11 and comparing the different black hole mass growth rates to

evaluate the effectiveness of the relations we derived. In the top panel, the blue band represents

the uncertainty in our predictions, bounded on top by the unbiased Equation (3) and below by the

generally accepted but ”biased” relation, Equation (4). Overlapping the band, we plot the filtered

data fit and see strong agreement in shape and location on the plot, implying that our filtered fit is

relatively accurate. The other two panels allow us to compare the shape and location of fluctuations

in the fit from the entire data set (Panel 2) and the filtered data fit (Panel 3). Evidently, we can see

little difference between each of the mass growth curves. This allows us to comfortably infer the

resulting evolution of galaxies and SMBHs in Figure 12.
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Figure 11: Black Hole Mass Growth The top panel contains a band with Equation (3) and Equation (4). We then plot
the filtered data to evaluate agreement with the band. The bottom panels compare our unfiltered and filtered fits.

Figure 12 shows the comparison between galaxy stellar mass growth and black hole mass

growth. Looking at the curves for each mass level, we see that the higher mass galaxies tend

to gain mass rapidly in their early lives while the higher mass black holes do so concurrently. Also,

when we look to the point of flattening for the two curves, we see that the galaxies and their corre-

sponding black holes tend to stop gaining mass at approximately the same time in their lives (same

redshift). We see this similar pattern represented in each of the other sets of curves between the
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Figure 12: Mass Growth Comparison By comparing these two plots side by side, we see the rollover effect happen
relatively at the same redshift. The left panel shows the progenitors of galaxies at z ∼ 0 and the right panel shows
their corresponding black holes at z ∼ 0.

two plots, providing further evidence of a SMBH-galaxy coevolution.

7 DISCUSSION

The speculated reasoning for the causes of the coevolution of galaxies and their black holes

follows the timeline of a galaxy’s star formation rate. When a galaxy first forms in the early uni-

verse, it has rapid star formation as there are vast amounts of gas available. Massive stars explode

as supernovae, ejecting dust and gas that is pulled back in and cycles back through the galaxy, to

be reused to form more stars. We see this reflected in Figure 12 (a), as early on (log(1+z) ∼ 1.1 to

0.5), the galaxies of every mass bin have very high rates of growth. This is paralleled in the black

hole mass growth plot as shown in (b), where the black hole rapidly gains mass for the early period

of its life. The next portion of the evolution comes where the black hole reaches a peak mass and

ejects all of the aforementioned dust and gas from the galaxy. Reaching that peak mass activates

the SMBH and the galactic winds produced by the black hole prevent the dust and gas from reform-

ing into stars. Additionally, our results confirm properties that we observe in galaxies today. The
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higher mass curves on the plot generally represent the more massive, elliptical/spheroid galaxies

that remain quiescent. We see this trend with mass reflected in the plots for lower mass galaxies,

whose masses level off at lower redshifts (closer to current time). This same trend continues for the

still lower mass spiral galaxies that are still actively forming stars today. Additionally, in terms of

the black hole mass function, when looking to the results of the two relations for SMBHmass func-

tion construction (M•-σ andM•-M∗), we see strong agreement between the two functions, leading

us to the conclusion that there is actually a stronger connection between the velocity dispersion and

stellar mass than previously thought.

8 CONCLUSION AND FUTUREWORK

In our paper, we sought to study the coevolution between galaxies and SMBHs over a broad

history of cosmic time. We exploit our novel convolution method to construct black hole mass

functions based on a variety of galaxy properties. In this case, we specifically examined velocity

dispersion and stellar mass methods. Not only did their respective SMBH mass functions show

excellent agreement with past observational inferences, but they also showed agreement with each

other. Note that throughout our study, we were worried about the effects of proposed bias by

Shankar et al. (2016). By testing biased and unbiased relations, we discovered negligible differ-

ences between the two, making us confident in the validity of our results. Finally, by analyzing the

rate of mass growth for individual galaxies and SMBHs, we notice agreement in shape and redshift

and provide further evidence of a coevolution. Our black hole number density and scaling relations

have incredible potential to be employed in future studies by constraining the relevant mechanisms

for galaxy formation. With our method, comparison, tested bias, and evidence, we emphasize that

this is the most comprehensive study yet of SMBH-galaxy coevolution.

In the future, we plan to analyze galaxies of different morphologies. In doing this, we would

compare how the results differ based on spiral or elliptical classification. Additionally, we wish to

investigate other galaxy properties besides velocity dispersion and stellar mass. We can then further

directly assess agreement and correlation with our method. Finally, as we receive newer data, we
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can explore the extent of bias in greater depths. By considering these additional factors, we become

one step closer in understanding this phenomenon of SMBH and galaxy mass coevolution.
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