

Tradeoffs Between Embeddings in Different Models of the Hyperbolic Space

INTRODUCTION

Motivation:

Hyperbolic embeddings have achieved recent success in capturing hierarchical information (e.g. WordNet). However, such optimizations that come from hyperbolic space are complex, and there is a lack of solid theoretical framework for understanding the tradeoffs that come from employing different hyperbolic models. We wish to elucidate the tradeoffs between such models, both in theory and in practice.

- This project tests with 4 hyperbolic models: **hyperboloid**, Poincaré disk, half-plane, and Beltrami-Klein.
- We experiment with various graphs consisting of various trees, densities, social networks, and cycles.
- We evaluate performance from the following metrics: running time, loss, distortion, and MAP.

GRAPHS

We synthesized 8 knowledge graphs with NetworkX by choosing parameters for tree radius, tree height, and/or graph density. These graphs fall into 4 broad categories.

Balanced Trees:

Figure 1a: Tree with radius 3, height 5

Density Graphs:

Figure 1b: Tree with radius 5, height 3

Figure 2: Erdos-Renyl graphs of 400 nodes with densities 0.25, 0.5,).75, and 1.

Note: The figure only displays 50 nodes with density 0.5 for clarity.

Social Network Graph:

Sierpinski Graph:

Figure 3: Les Misérables coappearances. Figure 4: Sierpiński Triangle fractal.

Models:

<u>Domains</u>

- $K = \{(x_1, \dots, x_n, 1) : x_1^2 + \dots + x_n^2 < 1\}$
- $H = \{(1, x_2, \dots, x_{n+1}) : x_{n+1} > 0\}$
- $I = \{(x_1, \dots, x_n, 0) : x_1^2 + \dots + x_n^2 < 1\}$

<u>Riemannian Metrics</u>

Distance Functions

$$\begin{aligned} d_K(p,q) &= \frac{1}{2} \log \frac{|aq||pb|}{|ap||qb|} \quad d_L(p,q) = \operatorname{arcosh} \left(p_1 q_1 - p_2 q_2 - \dots - p_1 q_1 \right) \\ d_H(p,q) &= \operatorname{arcosh} \left(1 + \frac{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \dots + (q_n - p_n)^2}{2p_n q_n} \right) \\ d_I(p,q) &= \operatorname{arcosh} \left(1 + \frac{2|pq|^2|r|^2}{(|r|^2 - |p|^2)(|r|^2 - |q|^2)} \right) \end{aligned}$$

Evaluation Metrics: Mean Average Precision (

$$\mathsf{MAP}(f) = \frac{1}{|V|} \sum_{a \in V} \frac{1}{\deg(a)} \sum_{i=1}^{|\mathcal{N}_a|} \frac{|\mathcal{N}_a \cap R_{a,b_i}|}{|R_{a,b_i}|}$$

Distortion

$$D(f) = \frac{1}{\binom{n}{2}} \left(\sum_{u,v \in U: u \neq v} \frac{|d_V(f(u), f(v)) - d_U(u, v)|}{d_U(u, v)} \right)$$

where $f: U \rightarrow V$ with distances $d_U d_V$, $a \in V$ with $N_a = \{b_1, b_2, \dots, b_{deg(a)}\}$, and $R_{a,bi}$ is the smallest set of nearest points for b_i of f(a).

Loss $\mathcal{L}(x) =$ $1 \le i \le j \le n$

Eric Lou erlou@stanford.edu

Shawn Zhang szhang22@stanford.edu

Ishan Gaur ishang@stanford.edu

MODELS & METHODS

where K = Klein, L = Hyperboloid, H = Half-plane, I = Poincaré.

 $L = \{(x_1, \dots, x_n, x_{n+1}) : x_1^2 + \dots + x_n^2 - x_{n+1}^2 = -1 \text{ and } x_{n+1} > 0\}$

$$d_L(p,q) = \operatorname{arcosh} (p_1 q_1 - p_2 q_2 - \dots - p_n q_n)$$

From the above equations, we mapped from Euclidean to hyperbolic space. In implementation, we also mapped hyperbolic models between each other.

Poincare':

Figure 5: Demonstrating projection from hyperboloid to Poincaré.

$$\left| \begin{array}{c} x_i, x_j \\ X_i, X_j \end{array} \right|^2 - 1 \left| \begin{array}{c} \text{with graph } G \text{ and} \\ \text{Riemannian manifold} \\ P. \end{array} \right|$$

RESULTS					
		Balan	ced Tree: R=3	H=5	
Model	Dim	Learning Rt	Loss	MAP	Distortion
Hyperboloid	10	5	0.12707	0.8811	0.2925
Poincare	10	5	0.12707	0.8811	0.2925
Halfplane	10	5	0.109614	0.8967	0.2754
Klein	10	0.1 Balan	0.310093	0.//03	0.5353
Model	Dim	Learning Rt	Loss	MAP	Distortion
Hyperboloid	10	10	0.004236	0.5888	0.0426
Poincare	10	10	0.004236	0.5888	0.0426
Halfplane	10	5	0.004787	0.8641	0.046
Klein	10	0.1	0.143739	0.8915	0.3439
Figure 6: Performance on Balanced Trees					
		Random G	raph: 400 Noc	les, P=0.25	
Model	Dim	Learning Rt	Loss	MAP	Distortion
Hyperboloid	5	5	0.003007	0.2579	0.0259
Halfplane	5	5	0.003007	0.2579	31 5376
Klein	10	0.1	0.000832	0.2475	0.0184
		Random G	raph: 400 Noo	les, P=0.50	
Model	Dim	Learning Rt	Loss	МАР	Distortion
Hyperboloid	10	5	0	0.5001	0.0001
Poincare	5	5	0.001961	0.5049	0.0163
Halfplane	10	5	1003.58405	0.5076	31.6572
Klein	10	0.1 Pandom G	0.000472	0.494	0.0095
Model	Dim	Learning Rt		MΔP	Distortion
Hyperboloid	10	5	0	0.7526	0
Poincare	10	5	0	0.7526	0
Halfplane	10	5	1006.02325	0.7546	31.7221
Klein	10	0.1	0.000239	0.7491	0.0051
		Random G	raph: 400 Noc	les, P=1.00	
Model	Dim	Learning Rt	Loss	MAP	Distortion
Roincare	10	5	0.000341	1	0.0028
Halfplane	10	0.1	0.000341	1	0.0028
Klein	10	0.1	0.000276	1	0.0013
	Figure 7:	Performance	e on Erdos-I	Renvl Rand	om Graphs
Sierninski [.] K=4 H=5					
Model	Dim	Learning Rt	Loss	MAP	Distortion
Hyperboloid	10	5	0.308715	0.748	0.4733
Poincare	10	5	0.308715	0.748	0.4733
Halfplane	10	5	0.306268	0.764	0.4684
Klein	10	0.1	0.583595	0.1828	0.6895
Model	Dim	Social G	Fraph: Les Mis	erables	Distortion
Hyperboloid	5	5	0.013329	0.8202	0.0869
Poincare	5	5	0.013329	0.8202	0.0869
Halfplane	10	5	0.009316	0.9176	0.0688
Klein	10	0.1	0.028229	0.9274	0.1339
Figure 8: Performance on Fractal and Social Graph					
	Average Epoch L	ength		Distortior	: Halfplane vs Klein
0.1		0.0	09 1		
0.08			0.8		
0.07 0.06					
0.05 E 0.04			Dia d	• • • • •	γ = -1.2792x ² -
0.03			<u>⊕</u> 0.2	- State	R ² =
0.01 0.005	0.003	0.003	0	0 0.1 0.2 0.3	6 0.4 0.5 0.6
0 Hyperboloi	d Poincare	Halfplane Kle	-0.2		Half Plane Distortion
Figure 8: Average Epoch Length Figure 9: Half-plane vs. Klein					
		1	MAP: Halfplane vs	Klein	
		0.9		•	•
		0.7		•	
		≥ 0.5 0.4	•		
		0.3	•		•
		0.1	s• •	• •	
		0 0.2	0.4 Halfplane M	0.6 0.8 IAP	1
Figure 10: Half-plane vs. Klein MAP					

DISCUSSION

Embeddings for the balanced trees were great as expected

- Social graphs, and last two random graphs also performed well
- Great MAP for social graphs means good neighbors preservation
- Big factor is number of nodes--natural facet of certain graphs

Halfplane and Klein's performances were correlated across runs

- MAP results imply neighbors are preserved better in Halfplane
- Seems like MAP of Halfplane is an upperbound for Klein

• Indicates further hyperparameters tuning might help Discrepancy in MAP and distortion of Halfplane for the Erdos-Renyl graphs

- Might be because uniform probability for each edge pushes MAP to that probability
- The first n randomly selected nodes are in the neighbors with probability p.
- Low distortion for the first three graphs might be overfitting, which would have to tested with different inference tasks Higher dimensions tended to be better
- Embedding has more space, but higher learning rates fail faster
- Gradient descent becomes unstable because the Euclidian norm of the update stays the same mod dimensionality, but the compression of the space at the edges is increasingly larger so errors from the approximations due to retraction are also larger

Klein takes much longer

- Expect the gradient update to be $O(n^2)$ instead of O(n), where n is the dimension, since more complex metric forces matrix multiplication for the exponential map
- Data shows this: runtimes are off by a factor of 10=100/10

FUTURE WORK

- More fine-grained hyperparameter search to start some predictive effort for learning rate determination
- Analyze computational faults further to attribute more of them to theoretical features of the models
- Test higher dimensional models with much larger datasets to tease out more accurate capabilities for each one
- Compare with Euclidean and Spherical embeddings

REFERENCES

In collaboration with Frederic Sala and Adva Wolf.

- Cannon, J. W., Floyd, W. J., Kenyon, R., & Parry, W. R. (1997). Hyperbolic Geometry (Vol. 31). MSRI Publications.
- Ganea, O. E., Bécigneul, G., & Hofmann, T. (2018). Hyperbolic entailment cones for learning hierarchical embeddings. arXiv preprint arXiv:1804.01882.
- Sala, F., de Sa, C., Gu, A., & Re, C. (2018). Representation Tradeoffs for Hyperbolic Embeddings. International Conference on Machine Learning.
- Wilson, B., & Leimeister, M. (2018). Gradient descent in hyperbolic space. arXiv preprint arXiv:1805.08207.

WC 9.57 9.57 9.3912 11.8158 WC 1.5709 1.5709 1.6317 6.371

WC 2.2029 2.2029 1.2922 1.4653 WC 1.0076 2.0725

1.1727 1.4156 WC 1 1

1.1718 1.4001 WC 1.397

1.397 1.4486 1.4486

WC 38.4042 38.4042 38.453 53.2123 WC 2.1958

2.1958 2.214 2.8731

Distortion