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We synthesized 8 knowledge graphs with NetworkX by choosing 
parameters for tree radius, tree height, and/or graph density. 
These graphs fall into 4 broad categories.

Balanced Trees:

Density Graphs:

Social Network Graph: Sierpinski Graph:

Figure 1a: Tree with radius 3, height 5.

Models:
where K = Klein, L = Hyperboloid, H = Half-plane, I = Poincaré.
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Mean Average Precision (MAP)
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where f: U→V with distances dU,dV, a∈V with Na={b1, b2, 
…bdeg(a)}, and Ra,bi is the smallest set of nearest points for bi of f(a).

Loss

DISCUSSION

FUTURE WORK
● More fine-grained hyperparameter search to start some predictive 

effort for learning rate determination
● Analyze computational faults further to attribute more of them 

to theoretical features of the models
● Test higher dimensional models with much larger datasets to tease 

out more accurate capabilities for each one
● Compare with Euclidean and Spherical embeddings
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Figure 2: Erdos-Renyl 
graphs of 400 nodes 
with densities 0.25, 0.5, 
0.75, and 1.

Note: The figure only 
displays 50 nodes with 
density 0.5 for clarity.

Motivation: 
Hyperbolic embeddings have achieved recent success in 
capturing hierarchical information (e.g. WordNet). However, 
such optimizations that come from hyperbolic space are 
complex, and there is a lack of solid theoretical framework for 
understanding the tradeoffs that come from employing different 
hyperbolic models. We wish to elucidate the tradeoffs between 
such models, both in theory and in practice. 

● This project tests with 4 hyperbolic models: hyperboloid, 
Poincaré disk, half -plane, and Beltrami-Klein.

● We experiment with various graphs consisting of various 
trees, densities, social networks, and cycles.

● We evaluate performance from the following metrics: 
running time, loss, distortion, and MAP.
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Figure 1b: Tree with radius 5, height 3.

Figure 3: Les Misérables coappearances.  Figure 4: Sierpiński Triangle fractal. 

Figure 6: Performance on Balanced Trees

Figure 7: Performance on Erdos-Renyl Random Graphs

Figure 8: Performance on Fractal and Social Graph

Figure 8: Average Epoch Length Figure 9: Half-plane vs. Klein Distortion

Figure 10: Half-plane vs. Klein MAP

From the above equations, we 
mapped from Euclidean to 
hyperbolic space. In 
implementation, we also 
mapped hyperbolic models 
between each other.

Figure 5: Demonstrating projection 
from hyperboloid to Poincaré.

Embeddings for the balanced trees were great as expected
● Social graphs, and last two random graphs also performed well
● Great MAP for social graphs means good neighbors preservation
● Big factor is number of nodes--natural facet of certain graphs
Halfplane and Klein’s performances were correlated across runs
● MAP results imply neighbors are preserved better in Halfplane
● Seems like MAP of Halfplane is an upperbound for Klein
● Indicates further hyperparameters tuning might help
Discrepancy in MAP and distortion of Halfplane for the 
Erdos-Renyl graphs
● Might be because uniform probability for each edge pushes MAP 

to that probability 
● The first n randomly selected nodes are in the neighbors with 

probability p.
● Low distortion for the first three graphs might be overfitting, 

which would have to tested with different inference tasks
Higher dimensions tended to be better
● Embedding has more space, but higher learning rates fail faster 
● Gradient descent becomes unstable because the Euclidian norm 

of the update stays the same mod dimensionality, but the 
compression of the space at the edges is increasingly larger so 
errors from the approximations due to retraction are also larger

Klein takes much longer
● Expect the gradient update to be O(n^2) instead of O(n), where 

n is the dimension,  since more complex metric forces matrix 
multiplication for the exponential map

● Data shows this: runtimes are off by a factor of 10=100/10

with graph G and 
Riemannian manifold 
P.

In collaboration with Frederic Sala and Adva Wolf.
● Cannon, J. W., Floyd, W. J., Kenyon, R., & Parry, W. R. (1997). Hyperbolic Geometry (Vol. 

31). MSRI Publications.
● Ganea, O. E., Bécigneul, G., & Hofmann, T. (2018). Hyperbolic entailment cones for 

learning hierarchical embeddings. arXiv preprint arXiv:1804.01882.
● Sala, F., de Sa, C., Gu, A., & Re, C. (2018). Representation Tradeoffs for Hyperbolic 

Embeddings. International Conference on Machine Learning.
● Wilson, B., & Leimeister, M. (2018). Gradient descent in hyperbolic space. arXiv preprint 

arXiv:1805.08207.


