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Motivation: Models: Balanced Tree: R=3, H=5 Embeddings for the balanced trees were great as expected
. . ] . Learning Rt Loss MAP Distortion . 1 h dl d h 1 f d H
Hyperbolic embeddings have achieved recent success in where K = Klein, L = Hyperboloid, / = Half-plane, I = Poincaré. iyperboloid| 10 5 012707 | 08811 0.2925 9.57 ® Social graphs, and last two random graphs also performed we
- - o1 - . Poincare 10 5 012707 | 0.8811 0.2925 9.57 ® Great MAP for social graphs means good neighbors preservation
capturing hierarchical information (e.g. WordNet). However, Domains T—— - T e ey e | . grap g & P
such optimizations that come from hyperbolic space are T " - P — T e Big factor is number of nodes--natural facet of certain graphs

Balanced Tree: R=5, H=3
MAP

K={(z1,...,%p,1) 27+ -+ 22 <1} Halfplane and Klein’s performances were correlated across runs

complex, and there is a lack of solid theoretical framework for

Loss Distortion

Learning Rt

understanding the tradeoffs that come ﬁ'om employing different L = {(;pl, o 3 @ 5 Wiy gcn_|_1) : gc% + -+ xi — 567214—1 — —1 and Lmyl = O} Hyperboloid 10 10 0.004236 0.5888 0.0426 1.5709 e MAP I'CSllltS lrnply IlCigthI'S arce pI'CSCI'VCd better 1n Halfplane
. . . Poincare 10 10 0.004236 0.5888 0.0426 1.5/09 : : .
hypel'bOhc mOdels. We WISh to CIUCIdatC the tradCOES between H = {(1, Los s = ,ch_|_1) : Tp41 > O} Halfplane 10 5 0.004787 0.8641 0.046 1.6317 ® Seel’.nS hke MAP OfHalfplane IS an upPerbO}lnd fOI' Kleln
such models, both in theory and in practice. 5 > Klein 10 0.1 0143739 | 08915 | 0.3439 6.371 ® Indicates further hyperparameters tuning might help
I = {(:Ul, as s 5B 0) 7 T+t X, < 1} Figure 6: Performance on Balanced Trees

Discrepancy in MAP and distortion of Halfplane for the

. . . . . . . . Random Graph: 400 Nodes, P=0.25
® This project tests with 4 hyperbolic models: hyperboloid, Riemannian Metrics s MAP Distortion Erdos-Renyl graphs
Poincaré disk, half-plane, and Beltrami-Klein. 162 dz? +---+dz2 (x1dxy + -+ + z0 dzsy)? H\;Pff'°°'°id : : e ® Might be because uniform probability for each edge pushes MAP
. . . . . . K — olhcare % . . . oo
e We experiment with various graphs consisting of various 1—a%—--—x2) (1—22—---—x2)2 Halfplane 10 5 995505658 | 0.2632 | 315376 | 1.2922 to that probability
trees, densities, social networks, and cycles. ds? = dz? + -+ da? — da? | Klein 10 Raom Graodes 0.0184 | _1.4653 ® The first n randomly selected nodes are in the neighbors with
e We evaluate performance from the following metrics: ,  dzd+-+dad,, , dz? + -+ da? learning Rt Loss MAP Distortion probability p.
n — . . . . .
running time, loss, distortion, and MAP. dsy = 2 dsy = 4 (1—22 ... —z2) Bypetboloic] 20 > 0 Gooek | 0.0081 | C.6076 e Low distortion for the first three graphs might be overfitting,
n+1 1 n Poincare 5 5 0.001961 0.5049 0.0163 210725 . ) ) ]
Halfplane 10 5 1003.58405 | 0.5076 31.6572 1.1727 which would have to tested with different inference tasks
Distance Functions AL . Raom Graodes 9 Sl Higher dimensions tended to be better
GRAPHS 1 laq||pb| learning Rt Loss MAP  Distortion ® Embedding has more space, but higher learning rates fail faster
di (p,q) = 5 log ||_|b| d(p, q) = arcosh (p1q1 — p2g2 — ... — Pndn) Hyperboloid| 10 5 0 0.7526 0 1 Gradi dg b P blgb th lidi
api\q . ' ® radient descent becomes unstable because the Luclidian norm
i : : Poincare 10 5 0 0.7526 0 1
We synthesized 8 knowledge grapbs with NetworkX by c.hoosmg (@1 — p1)2 + (g2 — P2)2 + oo. + (G — D)2 Halfplane 10 5 |1006.02325| 07546 | 317221 | 11718 of the update stays the same mod dimensionality, but the
parameters for tree radius, tree height, and/or graph density. dx(p,q) = arcosh (1 + ) Klein 10 0.1 0.000239 | 0.7491 0.0051 1.4001 . £h he edoes is i ol |
2Dnn RRnclomIGract: 100 Modes p=il 00 compression of the space at the edges is increasingly larger so

These graphs fall into 4 broad categories. 2lpq|2|r|?

Loss MAP Distortion

Learning Rt

dy((p, ) = arcosh (1 n errors from the approximations due to retraction are also larger

2 _ |2 2 _ 112 ) Hyperboloid 10 5 0.000341 1 0.0028 1.397 :
r r
Balanced Trees: (I ) a1*) Poincare 10 5 0.000341 1 0.0028 1.397 Klein takes much 10ng€r
) From the above equations, we HalplEne 20 oL L 0000326 d Q0013 L2456 ® Expect the gradient update to be O(n"2) instead of O(n), where
Klein 10 0.1 0.000276 1 0.0013 1.4486

n is the dimension, since more complex metric forces matrix
multiplication for the exponential map

mapped from Euclidean to

hyperbolic space. In

Figure 7: Performance on Erdos-Renyl Random Graphs
Sierpinski: K=4, H=5

— P implementation, we also _ Dim __ LearningRt ___Loss DiStorHion ® Data shows this: runtimes are oft by a factor of 10=100/10
\’ ¢ o—q . Hyperboloid 10 5 0.308715 0.748 0.4733 38.4042
{37 " = \ v mapped hyperbohc models Poincare 10 5 0.308715 0.748 0.4733 38.4042
o /I'/ Q‘\\\\ between each other Halfplane 10 5 0.306268 0.764 0.4684 38.453
) B 4 i N i ’ ¥ Klei 10 0.1 0.583595 0.1828 0.6895 53.2123 \XZ
{/’ //‘Q“\L\\ X 5?820”8 ) = Social Graph: Les Miserables FUTURE ORK
Figure 5: Demonstrating projection Dim Learning Rt Loss MAP Distortion . o
Figure 1a: Tree with radius 3, height S. Figure 1b: Iree with radius 5, height 3. , from hyperboloid to Poincaré. Hyperboloid 5 5 0.013329 0.8202 0.0869 2.1958 ® More ﬁne—gralned hyperparameter search to start some predlctlve
Poincare 5 5 0.013329 0.8202 0.0869 2.1958 : . s
Densitv Grapohs: . . Halfplane 10 5 0.009316 0.9176 0.0688 2.214 effort for lear ning rate determination
y P Evaluation Metrics: : :
Figure 2: Erdos-Renyl . Klein 10 01 | 0028229 | 09274 | 01339 | 28731 ® Analyze computational faults further to attribute more of them
graphs of 400 nodes NICLPNGI‘&gC Precision ( MAP ) Figure 8: Performance on Fractal and Social Graph to theoretical features of the models
1 111 Average Epoch Length istortion: Halfplane vs Klein . . . .
Z)Vl;l; delzlsllues 0-25, 0.5, 1 1 Nl NN Ry, R o el e Test higher dimensional models with much larger datasets to tease
. , dn . |\/I A P —_ S i 0.09 = | | | | | | . et ele o
(f) V| deg(a) Z |Ra, o out more accurate capabilities for each one
CLEV 1=1 gk 0.07 § o6 o e . . . .
Note: The figure only g o 5 L e Compare with Euclidean and Spherical embeddings
displays 50 nodes with Distortion = oos 50|
density 0.5 for clarity. 002 e
|dV (f(U), f (’U)) _ dU (u, ,U) | 0‘0(1) 2 ﬁ ﬁ . 0 01 02 03 04 05 06 07 08 09

Half Plane Distortion
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