
YSPA Final Report Team 3

Orbit Modeling of Asteroid 2017 BM31

Yale Summer Program in Astrophysics

Emma Arsekin Parker Jochum
Harmony School of Advancement Trinity Preparatory School

Kiki Huang Shawn Zhang
Shanghai American School Amador Valley High School

5 August 2017

Abstract

This four-week research project focused on mapping the orbit and determining the physical characteristics
of the small near-Earth asteroid, 2017 BM31, a recently discovered asteroid with few astrometric observa-
tions. Using remote observations in addition to in-person imaging from the Leitner Family Observatory
and Planetarium, we produced series of measurable images which we analyzed using the image processing
softwares MaxIm DL and SAOImage DS9. With this data, our team tracked BM31’s orbital elements over
the course of three weeks and then performed further photometric analysis to provide insight into its size and
composition. Our results show that the asteroid’s perihelion point is 0.98 AU away, its eccentricity is 0.15,
and its inclination is 21.6◦. Furthermore, we created an optimized orbit model in Python that integrated
BM31’s motion forwards in time, revealing that its path takes it just outside the Earth’s orbit, but at a
velocity that would produce a larger blast than any nuclear weapon should it collide with the Earth.

1 Introduction

While they may not seem intimidating, even
relatively small asteroids can cause massive dam-
age upon impact with the Earth; the twenty-meter
Chelyabinsk meteor impact in February 2013, for
example, caused glass to shatter within a 120-
kilometer radius of the meteor’s shockwave and
led to hundreds of reported injuries (Popova et al.
2013). This makes it imperative to understand and
predict the movements of near-Earth asteroids such
as 2017 BM31, an extremely small, fast-moving as-
teroid with low apparent magnitude. These char-
acteristics make it difficult to track and even locate
in the night sky, leading our team to conduct mul-
tiple observations from telescopes in Spain, Aus-
tralia, and California to supplement our data from
the Leitner Observatory in New Haven. These tele-
scopes produced images that we could then mea-
sure, allowing us to incorporate our astrometric
data into a Python simulation using the method

of Gauss. By integrating BM31’s position in space
over time, we created an accurate orbit model pro-
jecting well into the future. This allowed us to eas-
ily visualize the asteroid’s path and determine the
probability of a collision within the next hundred
thousand years.

2 Methods

2.1 Data Collection and Analysis

Over the course of three weeks, our team con-
ducted observations of 2017 BM31 from the Leit-
ner Family Observatory and Planetarium’s 16-inch
reflecting telescope in New Haven, Connecticut.
To supplement these images, we also conducted
remote observations from the Siding Spring Obser-
vatory in Australia, the AstroCamp Observatory
in Spain, and the Auberry telescope in California
via itelescope.net. After imaging the sky with these
telescopes, the photos were analyzed with MaxIm
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DL (Version 3.04; George et al. 2001) and SAOIm-
age DS9 (Version 7.4; Joye et al. 2015), programs
that are able to analyze and manipulate astromet-
rical images.

Once our data had been collected, our team
blinked through sets of nightly images in MaxIm
DL and was able to—with considerable difficulty
for our faint asteroid—identify 2017 BM31 and ob-
serve its path as it streaked across the sky. We
prepared our images for analysis by solve-fielding
them using astrometry.net (Lang et al. 2010),
which matches the images we took against a cat-
alog of star patterns across the sky. The program
then identifies reference stars it can use to map the
right ascension (α) and declination (δ) equivalents
of every pixel in the image, generating a World Co-
ordinate System (WCS). We also wrote a Python
program implementing the least squares plate re-
duction method to use reference stars to generate
a right ascension-declination map for the image;
however, because astrometry.net ’s algorithms are
more extensive and accurate, we ultimately used
them to obtain the right ascension and declination
of our asteroid for all of our observations.

Much of our data collection and analysis was
complicated by the dimness of our asteroid. Its
low magnitude made it nearly impossible to spot
in some of our shorter exposure images, and it
moved too quickly to appear as anything but a
dim streak that could not be centroided in longer
exposures. We circumvented this problem by ceas-
ing to use MaxIm DL to combine sets of nightly
images, a process that takes the median value of
corresponding pixels in each image set and con-
verts those median values into a combined image.
While this process effectively removes noise from
sets of images and creates clearer distinctions be-
tween stars and the background, our asteroid was
too dim and fast-moving to appear in combined
images. Our solution was to analyze each image
individually which made our asteroid marginally
easier to identify amidst the noise in our images.

Figure 1: Sample Image Identifying 2017 BM31

2.2 Orbit Determination

Our image analyses in MaxIm DL yielded right
ascension and declination data, giving us the posi-
tion of the asteroid. We then employed the Gauss
method of orbit determination to solve for the or-
bit of our asteroid. This method takes the values
of right ascension and declination at three discrete
times and uses those to find the equatorial position
of the asteroid relative to the Sun and its velocity
relative to the Sun at the middle observation.

First, the orbit of the asteroid must obey the ge-
ometric laws of the fundamental vector triangle be-
tween the Earth, Sun, and asteroid (Faison, “Mak-
ing an Ephemeris”), depicted in Figure 2:

~ρ

~R

~r

Figure 2: Fundamental Vector Triangle

The three vectors depicted in the triangle repre-
sent ~R, the vector pointing from Earth to the Sun;
~r, the vector from the Sun to the asteroid; and ~ρ,
the topocentric vector pointing from the observa-
tion site on the surface of the Earth to the asteroid.
Due to the geometry of this configuration, we knew
that the orbit of the asteroid would always behave
according to the equation:

~r = ρρ̂− ~R (1)
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To solve for ~r, we needed values for all the other
variables in this equation. We found ρ̂ by:

ρ̂i = 〈cosαi cos δi, sinαi cos δi, sin δi〉 (2)

Meanwhile, ~R was obtained for each observation
from the JPL DE405 Ephemeris Generator through
a Python package, EphemPy (Version 1.3; Buvel
2009). Along with these geometric relationships,
our method of Gauss used the generalized equation
of motion for a body in an elliptical orbit around
another body:

~̈r =
−µ~r
r3

(3)

in which the terms are acceleration of the or-
biting body relative to the center body in
AU/modified day squared, mass of the body be-
ing orbited in solar masses, and distance between
the two objects in AU. When used in conjunction
with a Taylor expansion (Faison, “Numerical Inte-
gration”), the equation of motion gave us a posi-
tion of the asteroid at any given time in terms of
its position and velocity at the middle observation
according to the f and g series:

f = 1− τ2

2r23

g = τ − τ3

6r23

r(τ) = f ~r2 + g ~̇r2

(4)

Given these equations and unknowns, we had
to input a reasonable initial guess (∼1.5 AU) for
the value of r2 in order to have all the information
we needed to calculate the position vector. The
method of Gauss then prescribes a specific set of
vector algebra operations to perform using one’s
collected data that can be used to solve for the
distance from the observation site on Earth to the
asteroid (ρ) for each of the three observations. We
then inputted into the method of Gauss as the ini-
tial guess for the distance to the asteroid at the
middle observation, and then reran all the calcu-
lations until ρ2 converged to a single value. Once
we had a final calculated ρ for all three of the ob-
servations, we solved ~r = ρρ̂ − ~R for ~r at all three
times of observation. However, in order to be able
to calculate all of the classical orbital elements, one
must have both ~r and ~̇r, so we had to calculate the
latter using Equation 5:

~̇r2 =
f3

g1f3 − g3f1
~r1 −

f1
g1f3 − g3f1

~r3 (5)

2.3 Orbit Model Optimization

To optimize our orbit model, we used our po-
sition (~r) and velocity (~̇r) vectors relative to the
Sun as the independent variable, and we used the
goodness of fit of our model to our data as the
dependent variable. To determine the goodness
of fit, we used the sum of the root-mean-squares
(RMS) of the residuals for right ascension and dec-
lination between our model’s predictions and ran
through our ephemeris generation code for RA and
Dec at the same times as our recorded observa-
tions. The optimization method used was a combi-
nation of a hill-climbing/random step optimization
paired with a genetic algorithm (Feddersen, “Hill
Climbing”). The code makes minute and random

changes to each component of ~r and ~̇r and checks
to see if this increases or decreases the summed
RMS (whether the model got better or worse). It

then returns to the previous values of ~r and ~̇r if the
model gets worse and taking another small random
step if the fit is better. The genetic algorithm com-
ponent works by generating a population of these
mutated vectors and selecting the best out of those
as the starting conditions on which to run the opti-
mization code, therefore honing in on only the best
fitting ~r and ~̇r. After running the algorithm, we
saw optimistic results:

Figure 3: Optimized Orbit Model

In the figure above, the triangle plot represents
our model of the asteroid’s orbit and the circle plot
is our recorded observations of the asteroid. Look-
ing at the tightness of fit, it is evident that our op-
timization code significantly improved our model.
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2.4 Osculating Orbital Elements

After the position (~r) and velocity (~̇r) vectors
were determined using method of Gauss, they were
then used to find the osculating orbital elements
based on Kepler’s laws and Newton’s Conservation
of Momentum.

The angular momentum (h) was calculated as
the cross product between the position and the ve-
locity vectors:

~h = ~r × ~̇r (6)

The eccentricity (e) was then calculated using
the cross product between the velocity and angular
momentum vectors, and then subtracting the unit
vector of position.

~e = (~̇r × ~h)− r̂ (7)

This yielded the vector pointing in the direction of
the perihelion that had a magnitude equivalent to
the eccentricity. Using the eccentricity, the perihe-
lion (qperihelion) and aphelion (qaphelion) distances
were calculated with:

qperihelion =
|~h|2

1 + |~e|

qaphelion =
|~h|2

1− |~e|

(8)

The semi-major axis (α) was found by adding
the perihelion distance to the aphelion distance and
dividing the sum by two:

α =
qperi + qap

2
(9)

The inclination (i) was calculated by taking the

arccosine of the z-component of ĥ, which is the unit
vector of angular momentum. By taking the z-
component, the angle between h and the x-y plane
can be found.

i = cos−1(ĥz) (10)

To continue, an intermediate vector ~N was cal-
culated to represent the vector pointing to the as-
cending node of the orbit, using the cross product
between the z-axis and the angular momentum vec-
tor. This means that this vector ~N lies both on
the x-y plane as it lies orthogonal to the z-axis, as
well as the orbital plane. The line represents the
moment where the asteroid crosses the equatorial
plane on its orbit.

~N = ẑ × ~h (11)

The longitude of the ascending node (Ω) was
calculated as the arccosine of the dot product of

the unit vector N̂ and the x-axis, which gives the
angle between them. If the z-component of the an-
gular momentum was negative, this angle was sub-
tracted from 360◦ because the orbit proceeds in the
opposite direction. The argument of perihelion (ω)
was calculated as the arccosine of the dot product
of the unit vector N̂ and the ê:

Ω = cos−1(N̂ · ẑ)
ω = cos−1(N̂ · ê)

(12)

2.5 Uncertainty

The uncertainty for the osculating orbital ele-
ments takes into account the possible error caused
by the telescope, which is approximately the same
as the resolution of the telescope. The minimum
angular separation visible under the 16-inch tele-
scope is calculated as follows:

θ = 1.220
λ

d
(13)

where θ is the angular separation, λ is the wave-
length of light being observed, and d is the diame-
ter of the telescope. To approximate θ, we used a
wavelength of 500nm to represent the visible filter,
and a diameter of 0.4m for the telescope. Then, θ
is 0.0087◦. θ/15 gives the uncertainty in hours of
right ascension, and θ can be used as it is for the
declination. Thus, we have calculated uncertainties
by taking only one significant figure, represented
here as δRA and δDec:

δRA = 0.0006
δDec = 0.009

There are four possible combinations of extreme
uncertainties, RA±δRA and Dec±δDec. Using the
method of Gauss, we calculated the position and
velocity of the asteroid on JD 2457950.252. The
orbital elements were calculated for that set of po-
sition and velocity vectors. Then, we calculated
the orbital elements using all four possible combi-
nations and subtracted the original orbital elements
from those of JD 2457950.252. This gives the un-
certainty in orbital elements that propagates from
the uncertainty from the telescope. However, the
combination of RA−δRA and Dec−δDec resulted in
a hyperbolic orbit, so it was not included in the cal-
culation of the uncertainty of the orbital elements.

Another possible uncertainty is represented by
the RMS of the residuals between our model data
and our observations, and it arises from an imper-
fect orbit determination algorithm. The possible
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uncertainty caused by an imperfect orbit determi-
nation method has not been included in the calcu-
lation of the uncertainty for the orbital elements.
It is very difficult to use analytic methods to cal-
culate the uncertainty that propagates through the
method of Gauss. Therefore, the best way to deter-
mine uncertainty is to use the most extreme pos-
sible values of RA and declination to numerically
find the uncertainty of orbital elements.

The RMS is useful, however, in finding the er-
ror for the RA and declination. The error bars
on the RA and declination graphed over time were
calculated using the RMS. We calculated the ex-
treme RMS values using the four combinations of
RA ± δRA and Dec ± δDec. Then, we took the
average of the extreme RMS values for RA and
declination as the errors for the RA and declina-
tion respectively. The error values represent the
amount that the RA and declination predicted by
our orbit model could be inaccurate, taking into
account both the instrumental errors with the tele-
scope as well as the imperfect orbit model. The
averaged RMS values are as follows (taking only 1
significant figure):

RMSRA = 0.02
RMSDec = 0.5

2.6 Long-Term Integration

The long-term trajectory of the asteroid was
determined by inputting the position of velocity
of the asteroid on JD 2457950.252 into the RE-
BOUND Python integrator, a code developed by
Rein and Liu (2012). This integrator includes the
effects of Jupiter’s and Earth’s gravity and takes
into account conservation of energy, making it a
much more accurate and precise integrator than
our own code which only utilized a simple fourth
order Runge-Kutta integration method. We inte-
grated forward by 10,000 years to find the mini-
mum distance between the asteroid and the earth
in the near future, and our time step was set to
0.01 modified days.

3 Results

3.1 Data From Observations

On our nights of observation, we were able to
locate 2017 BM31 and find its right ascension and
declination through solve-fielding. Our data is pro-
vided below:

JD RA Dec

2457948.8586 18h 20m 5.92s 7° 1’ 41.26”

2457950.2523 18h 28m 59.84s 3° 51’ 21.08”

2457951.6361 18h 38m 47.62s 0° 16’ 26.73”

2457954.6210 18h 54m 1s -5° 15’ 33”

2457954.6280 18h 54m 3s -5° 16’ 16”

2457959.1115 19h 10m 20.99s -10° 59’ 3.08”

2457963.0665 19h 21m 50.99s -14° 59’ 3.08”

2457966.7766 19h 29m 44.61s -17° 9’ 33.25”

Table 1: RA & Dec from Observations

This table only displays observations that are sep-
arated by at least 10 minutes apart. The data were
also collected from a variety of different telescopes
(Row #1 - California; #2, 7 - Australia; #3, 4, 5,
6 - LFOP; and #8 - SMARTS).

3.2 Orbit Determination

The osculating orbital elements of 2017 BM31
were calculated from observations from 14 July to
21 July. Using the position and velocity vectors
from the method of Gauss implementation, the fol-
lowing orbital elements were calculated:

h 1.06±0.01

e 0.15±0.02

q 0.986AU±0.002

a 1.16AU±1.03

i 21.6◦ ± 0.3

Ω 5.8119◦ ± 1.0

ω 228.4◦ ± 1.5

Table 2: Orbital Elements

where the position and velocity vectors were gen-
erated as:

~r = 0.405x̂− 0.897ŷ − 0.370ẑ

~̇r = 0.979x̂+ 0.274ŷ + 0.069ẑ
(14)

According to the REBOUND integrator, in
the next 1,000 years, the asteroid arrives within
0.0136AU on JD 2768694.30804. In the next 10,000
years, the minimum distance between the asteroid
and the Earth would be 0.0008AU in 3722 AD.
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Figure 4: REBOUND Integration for 10 Years

The following figure displays the RA and dec-
lination calculated by our model for every Julian
date where we made an observation. The error bars
represent the possible range of the actual RA and
declination values for that night.

Figure 5: Modeled RA and Declination

3.3 Photometry

Collecting photometry data from 2017 BM31
was a daunting task given its low brightness, and
it became more diffucult as time went on since the
asteroid gradually became dimmer. Because of this

and its high velocity, most images from our tele-
scopes failed to display proper Gaussian distribu-
tions of light intensity when analyzed with MaxIm
DL’s photometry tool.

In an effort to find the asteroid’s absolute mag-
nitude, we analyzed one of our clearer images. Us-
ing a reference star, we calibrated the image and
found the apparent magnitude:

JD Magnitude Phase Angle

2457950.25176 17.38 32.61°

Table 3: Magnitude & Phase Angle

Note: the phase angle was calculated through the
dot product between ~ρ and ~r (see Figure 2: Fun-
damental Vector Triangle). We then calculated the
absolute magnitude with equations from Dymock
2007:

H(α) = V –5 log(r∆)

H = H(α) + 2.5 log[(1−G)ϕ1(α) +Gϕ2(α)]

ϕi = exp{−Ai(tan 0.5α)Bi}
(15)

where V is apparent magnitude, r is the asteroid’s
distance from the Sun, ∆ is the asteroid’s distance
from the Earth, A1 = 3.33, A2 = 1.87, B1 = 0.63,
B2 = 1.22, G = 0.15, and α is the phase angle.
By plugging in the values from Table 3, we discov-
ered that our asteroid has an absolute magnitude
of 22.8.

3.4 Albedo & Size

Albedo is an intrinsic property of an asteroid
which determines its reflectivity, and falls within a
known range of values for the two main types of as-
teroids (Class C and Class S). In order to determine
the class of 2017 BM31, we generated a spectrum
by measuring photometric data from images taken
in four wavelengths between 450 and 810 nanome-
ters. Since most of our images were inadequate
for photometry, we conducted remote observations
from the more sensitive 1.3m SMARTS telescope
in Chile, which gave us a better light profile.

After calibrating our images from the SMARTS
telescope, we constructed a plot of 2017 BM31’s
relative brightness in the BVRI spectrum over time:
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Figure 6: Spectrum of 2017 BM31

Note: SMARTS takes the pictures in multiple filter
bands - B = 450nm, V = 550nm, R = 660nm, and
I = 810nm.

This spectrum exhibits behavior very similar to
a typical absorption spectrum for C Class carbona-
ceous asteroids. We then calculated the color pa-
rameter for the asteroid using those same SMARTS
images and the equation:

a = 0.9825(v − r) + 0.3713(r − i)− 0.6204 (16)

This yielded a value less than zero, consistent with
the color parameter of C-Type asteroids. Having
ascertained a range of values for the albedo of our
asteroid (0.05-0.25 for a Class C), we were able to
use this information to calculate an approximation
of the diameter of the asteroid using the equation:

D =
1329√
A

10−.2H (17)

where D is the diameter in kilometers, A is the
albedo, and H is the absolute magnitude of the as-
teroid (22.8) (Faison, “Introduction to Albedo”).
With our data, this equation outputs a diameter of
118 meters ±45 meters, making 2017 BM31 a very
small asteroid indeed.

3.5 Impact Assessment

In order to calculate the energy of the asteroid’s
impact if it were to collide with Earth, we needed to
determine the two terms in the standard kinetic en-
ergy equation: mass and speed. After calculating
the class and approximate diameter of the aster-
oid, we obtained the mass by assuming a spherical
shape and using the average density of a Class C
asteroid, 1.38 g

cm3 (Krasinski et al. 2002). We then

used the Rebound Python package to run a long-
term integration of our asteroid, determining when
its closest approach to Earth occurs, as well as the
velocity vectors of Earth and the asteroid at that
time. By subtracting one of these two vectors from
the other and taking the magnitude of the resulting
vector, we obtained the speed of the asteroid rela-
tive to the Earth upon impact if the asteroid were
to hit the earth at the time output by the Rebound
integration as coinciding with the point of closest
approach. Using the estimated size of our asteroid
and the approximate density for its class we calcu-
lated a mass of about 3 billion kilograms and the
Rebound integration gave us an impact speed of 48
km
sec . Substituting these values into the equation for
kinetic energy results in a whopping 3× 1015 kilo-
joules of energy, equivalent to the energy of 850
megatons of TNT (over fifteen times the destruc-
tive power of the largest nuclear bomb produced to
date).

4 Discussion

We have found 2017 BM31 to be an incredibly
small and dim asteroid, with a diameter around a
measly 118 meters and an absolute magnitude of
22. One of the most remarkable traits of this aster-
oid, however, is how similar its orbit is to Earth’s;
2017 BM31 has an eccentricity almost identical to
that of Earth, a semimajor axis of nearly 1 AU,
and an almost nonexistent inclination. While its
path currently takes it well out of Earth’s orbit,
the threat 2017 BM31 poses to Earth in the future
is not negligible. Our models have predicted that in
the year 3722 it may approach as close as two lunar
distances away, and its path crosses or comes very
close to that of Earth with every rotation around
the Sun. One might be tempted to discount the
asteroid’s impact in the event of a collision due to
its relatively small size, but what it lacks in size it
more than makes up for in speed, meaning that the
energy dissipated in a collision would be enough to
enact serious damage upon the planet.

Interestingly, our orbit model is very different
from the model generated by JPL Horizons, which
has a much greater semi-major axis and eccentric-
ity. This discrepancy may have arisen from the
fact that multiple orbits could be fitted to a set
of observations, especially if the time span of the
observations is relatively short. The observations
we made over 3 weeks may have yielded a close ap-
proximation to the asteroid’s position and velocity
based on these observations. However, they may
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have been trapped on a ”hill of optimization” where
the orbital model we calculated is relatively fit to
our observations, but there is a better model that
is drastically different. Using the hill-climbing op-
timization method, we would not be able to reach
the better model from our method of Gauss op-
timization because moving in any direction would
lead to a decrease in goodness of fit. Our method
is thus confined to a local maximum and unable to
reach the global one. This represents a limitation
in our observations and orbit determination meth-
ods. This may account for the high RMS value of
around 0.02 hours for the right ascension and 0.3◦

for the declination.

Additionally, the possible uncertainty caused by
the centroid and astrometry algorithms were not
taken into account when assessing the overall un-
certainty of our orbit determination. Further im-
provements would involve more extensive numeri-
cal tests for the uncertainties due to centroid, as-
trometry, or instrumental inaccuracies. These un-
certainties may factor a large role in our orbit deter-
mination, as slight changes in our calculated initial
conditions could yield extremely different results.

For example, certain points of RA and declination
that lie within the instrumental error range yield
orbits that do not converge. Although our model
fits our observations with reasonable accuracy for
the duration of YSPA, more distant data points
would help ensure that our orbit model is not sim-
ply one that happens to fit the data closely. Par-
allax observing would increase the accuracy of the
initial guess for position, making it more likely to
determine the true orbit. The findings presented in
this paper represent a model best fit to this range of
observations, and a more accurate model can only
be found with more extensive observations of 2017
BM31.
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